Витамины
Содержание статьи
К витаминам относятся различные по химическому строению вещества с высокой биологической активностью, которые являются незаменимыми для организма и в ничтожно малых количествах играют важнейшую роль в процессах его жизнедеятельности. Витаминов насчитывается более 30, и все они жизненно необходимы человеческому организму, хотя не имеют ни энергетической, ни пластической ценности.
Тесная связь витаминов с ферментами определяет их роль как биологических катализаторов всех жизненных функций организма. Благодаря витаминам повышаются защитные функции организма, сохраняются трудоспособность и здоровье. Потребности организма в витаминах обеспечиваются разнообразным питанием и правильной кулинарной обработкой продуктов питания.
Какие витамины синтезируются в организме
Некоторые витамины синтезируются в организме, одни – в небольшом количестве (В1 В2, РР), другие – в несколько большем (В6, В12, К, биотин, липоевая, фолиевая кислоты).
Витамины, которые плохо всасываются в кишечнике, должны поступать с пищей в достаточном количестве. Неконтролируемый приём антибиотиков и сульфаниламидных препаратов часто способствует возникновению дисбактериоза и гиповитаминоза витаминов К, группы В и других.
Гиповитаминоз
Гиповитаминозы развиваются часто при неполноценном питании, малом содержании витаминов в пище, если нарушен процесс всасывания в кишечнике. Перегревание, замораживание, высушивание продуктов снижает содержание витаминов С и Р в пище. Если пища бедна жирами, то, естественно, снижается содержание в организме жирорастворимых витаминов (A, D, Е, К). Мало белка – мало опять же витаминов А, С, В1, В2, В6, РР, фолиевой кислоты и других. Они выводятся почками.
Поэтому, чтобы добиться положительных результатов при лечении гиповитаминоза, в первую очередь надо добиться нормализации белка в организме. Именно белковая недостаточность мешает образованию витаминно-белковых комплексов, снижает всасывание и движение витаминов и, в конечном итоге, их разрушение. А если пища богата углеводами, то необходимо увеличивать и количество витамина B1.
Группы витаминов
Витамины подразделяются на три группы:
- Витамины, растворимые в воде: аскорбиновая кислота (витамин С), тиамин (витамин В1), рибофлавин (витамин В2), никотиновая кислота (витамин В3, ниацин, витамин РР), пиридоксин (витамин В6), фолиевая кислота (витамин В9, фолацин), цианокобаламин (витамин В12), пантотеновая кислота (витамин В5), биотин (витамин Н), холин (витамин В4).
- Витамины, растворимые в жирах: ретинол (витамин А), кальциферолы (витамин D), токоферолы (витамин Е), филлохиноны (витамин К).
- Витаминоподобные соединения: биофлавоноиды (витамин Р), оротовая кислота (витамин В13), пангамовая кислота (витамин В16), парааминобензойная кислота, липоевая кислота, инозит (витамин В8), S-метилметионин (противоязвенный фактор, витамин U). Некоторые авторы склонны относить холин к витаминоподобным соединениям. Витаминоподобные соединения не обладают всеми свойствами витаминов.
Наше время диктует свои правила и чтобы не допускать недостаток витаминов в организме, нужно их дополнительное применение. Лучше всего подойдут комплексные препараты, которые содержат суточную норма полезных веществ.
Одним из таких препаратов является Витамикс. Он содержит биологические активные вещества: бетаин, каротиноиды, флавоноиды (рутин, кверцетин, кемферол, цианидин), дубильные вещества, витамины (Е, С, РР, К, группы В), стерины, холин, фосфолипиды, глюкозу, сахарозу, фруктозу, пектины, полисахариды, органические кислоты, лейкоантоцианы, ненасыщенные жирные кислоты, микроэлементы (железо, фосфор, кальций, медь, магний, сера, калий, кобальт, цинк, кремний, никель, молибден, марганец), ферменты (инвертаза, диастаза, амилаза, гликогеназа, фосфатаза и др.). Применение Витамикс оказывает многостороннее положительное воздействие на организм человека.
Внимание! Копирование материалов без указания активной ссылки на ресурс https://mir-zdor.ru запрещено!
Источник
НУЖНЫ ЛИ ВИТАМИНЫ: ПРОВИТАМИНЫ И ИХ ПРЕВРАЩЕНИЕ В ОРГАНИЗМЕ
Известное даже ребенку слово «витамины» образовано от латинского слова вита (vita) – жизнь. И это, конечно, не случайно. Витамины имеют огромное значение для организма и являются катализаторами многих обменных процессов, которые без их участия просто были бы невозможны и привели бы к гибели человека. Но несмотря на столь важную их роль в нашей жизни, в организме большинство витаминов не может синтезироваться самостоятельно, за исключением витамина D, да и тот синтезируется только при определенных условиях. Кстати, витамины в организм чаще попадают не в «чистом» виде, а в виде провитаминов и лишь после, при необходимости, превращаются в собственно витамины.
Классификация витаминов
Все витамины принято классифицировать по физико-химическим свойствам. Это разделение не совершенно, но его до сих пор используют. Существует и классификация по значению витаминов, которая указывает на возможность того или иного витамина предотвращать или устранять заболевания.
В целом существуют следующие виды витаминов:
- Жирорастворимые: А, D, Е, К.
Например, витамин D антирахитический, а К – антигеморрагический.
- Водорастворимые: группы В, Н, С Р
Например, витамин В2 – для роста, В3 – антидерматитный.
- Витаминоподобные вещества
Это разнообразные химические вещества, синтезируемые самим организмом, они обладают витаминными свойствами, но по химической структуре не являются ими.
Функции и свойства витаминов
У каждого витамина свое предназначение, можно сказать, специфическое. Однако можно выделить общие функции, присущие всем витаминам. Во-первых, витамины участвуют в образовании ферментов, гормонов и регулируют обмен веществ, являются его катализаторами. При их дефиците обменные процессы замедляются, а при хроническом недостатке могут и вовсе нарушаться, что проявляется соответствующими симптомами и болезнями. Во-вторых, витамины активны даже в очень малых количествах. В-третьих, организм может запасать только жирорастворимые витамины, поэтому может формироваться их передозировка со всеми вытекающими последствиями. Переизбытка водорастворимых практически не существует, так как излишки выводятся почками вместе с мочой. В-четвертых, витамины не так безопасны, как кажется, их избыток еще более опасен, чем дефицит. Гипервитаминоз – одна из причин серьезного хронического отравления.
Что такое провитамины
На упаковках продуктов написано, какие витамины содержатся в них. Но на самом деле в продуктах в превалирующем большинстве случаев содержатся именно провитамины – предшественники витаминов, можно сказать, их неактивная форма. И только после последовательных химических реакций эти провитамины могут превращаться в активную форму витаминов, которые и выполняют возложенные на них функции. Для выполнения этого процесса большое значение имеют дополнительные факторы, например, состояние кишечного микробиома. Каждый витамин имеет свой провитамин, например, у витамина С – это аскорбиновая кислота, а у витамина А – бета-каротин, у витамина Е – токоферол.
Какие виды предшественников витаминов существуют?
Для синтезирования витамина К, который необходим организму для поддержания свертывающей и противосвертывающей системы крови, минерализации костей, используется провитамин – филлохинон, но превращение состоится лишь при условии нормального состояния микробиома кишечника. Провитамин витамина А – бета-каротин, обладающий антиоксидантными свойствами. «Чистый» витамин А можно найти только в продуктах животного происхождения, а вот каротин – в оранжевых овощах и фруктах. Аскорбаты – большая группа провитаминов витамина С, их дефицит (кратковременный) довольно распространен, ведь они капризные и хрупкие. Разрушение провитаминов происходит под действием воздуха, нагревания и даже при соприкосновении с металлической посудой. Повышенный распад наблюдается на фоне стресса, беременности, лактации и курения. Предшественники витаминов группы В должны присутствовать в рационе ежедневно, так как эти витамины являются водорастворимыми.
Витамины могут синтезироваться в организме
Витамины, точнее провитамины, должны поступать в организм извне, то есть с едой, поливитаминами или БАДами. Наш организм может лишь в ограниченных количествах превращать триптофан – аминокислоту в витамин РР (ниацин). Кишечный микробиом может производить витамин К, но его недостаточно, чтобы покрывать суточную потребность. Единственный витамин, который теоретически может синтезироваться организмом под действием солнечных лучей из холестерина, – это витамин D (кальциферол), но…! В организме должны быть формы — предшественники, которые могут поступать только извне. Поэтому в рационе должны быть молочные и продукты животного происхождения, рыба и морепродукты. Только по строгим показаниям врачи могут назначать лекарственные формы этого витамина.
Текст: Юлия Лапушкина.
Поделиться в социальных сетях:
Источник
Синтез витамина D в коже
По международным данным, эффективное излучение для синтеза витамина D охватывает спектральный диапазон (255–330 нм) с максимумом около 295 нм (UVB). Воздействие УФ-излучения, индуцирующего покраснение кожи в минимальной эритемной дозе в течение 15–20 минут, способно индуцировать выработку до 250 мкг витамина D (10 000 МЕ).
Кожа человека представляет собой место синтеза витамина D, а также орган-мишень для биологически активной формы этого витамина. Витамин D влияет на многие функции кожи, начиная от пролиферации, дифференцировки и апоптоза кератиноцитов до поддержания барьера и иммунорегуляторных процессов. Кроме того, витамин D рассматривается в качестве терапевтического варианта при многих патологиях кожи.
Кожа выступает в качестве первой линии защиты от различных инфекций. Как известно, она состоит из трех структур: эпидермиса, дермы и гиподермы.
Кератиноциты составляют 95 % всех эпидермальных клеток. Существует несколько эпидермальных слоев, каждый из которых состоит из кератиноцитов на разных стадиях дифференцировки:
базальный слой: состоит из столбчатых пролиферирующих кератиноцитов с обширной сетью кератинов K5 и K14;
слой шиповидных клеток: в этом слое кератиноциты инициируют дифференцировку посредством синтеза кератинов K1 и K10, инволюкрина и фермента трансглутаминазы;
зернистый слой: характеризуется кератиноцитами, богатыми электронно-плотными гранулами белка кератогиалина, содержащего маркеры поздней дифференциации, такие как профилаггрин (предшественник филаггрина) и лорикрин; он также состоит из заполненных липидами пластинчатых тел, которые освобождают свое содержимое в межклеточные пространства между зернистым и роговым слоем;
роговой слой: самый верхний слой, состоит из окончательно дифференцированных ороговевших клеток, известных как корнеоциты. Плазматическая мембрана корнеоцитов заменяется нерастворимым белковым слоем, называемым «ороговевшей оболочкой», состоящим из структурных белков, таких как инволюкрин, лорикрин, филаггрин и небольшой пролин-богатый белок, сшитый трансглутаминазой.
Филаггрин является особенно важной молекулой – он способствует агрегации кератиновых нитей цитоскелета в пучки, что приводит к соединению корнеоцитов в уплощенные диски. Также он способствует гидратации путем протеолиза в пирролидинкарбоновую и трансурокановую кислоту в условиях низкого содержания воды. Постоянная толщина эпидермиса поддерживается тонким балансом между пролиферацией базальных клеток и десквамацией корнеоцитов. Процесс десквамации начинается с деградации корнеодесмосом (модифицированных десмосом) и контролируется рядом протеаз и их ингибиторов. Пептидазы, связанные с калликреином человека (KLK), включая KLK5, KLK7 и KLK14, являются известными протеазами, участвующими в десквамации.
Витамин D: синтез и функции
Витамин D является жирорастворимым витамином, который встречается в двух основных формах:
эргокальциферол (витамин D2), вырабатываемый растениями,
холекальциферол (витамин D3), полученный из продуктов животного происхождения.
Основным источником витамина D у людей является синтез в коже в присутствии солнечного света. Воздействие 7-дегидрохолестерина (7-DHC) ультрафиолетовым излучением B (UVB) с длиной волны 290–315 нм приводит к образованию превитамина D в коже, который термически изомеризуется в более стабильный витамин D (холекальциферол). Витамин D, синтезируемый в коже или получаемый из рациона, подвергается двум реакциям гидроксилирования: сначала в печени фермент витамин D 25-гидроксилаза (CYP2R1) образует 25-гидроксивитамин D, 25 (OH) D, также известный как кальцидиол, и затем в почках 1α-гидроксилазой (CYP27B1) с образованием активного метаболита 1,25-дигидроксивитамина D, 1,25 (OH) 2D, также известного как кальцитриол.
И 25 (OH) D, и 1,25 (OH) 2D могут метаболически инактивироваться путем гидроксилирования 24-гидроксилазой (CYP24A1). Уровни витамина D в сыворотке строго регулируются механизмом обратной связи кальция, фосфора, паратиреоидного гормона, фактора роста фибробластов и самого витамина D. Состояние витамина D оценивается путем измерения уровня 25 (OH) D в сыворотке, который является его основной циркулирующей формой. В соответствии с рекомендациями Американского эндокринного общества дефицит витамина D определяется как уровень 25 (OH) D в сыворотке ниже 20 нг / мл (50 нмоль / л), а недостаточность витамина D – как уровень 25 (OH) D в сыворотке от 21 до 29 нг / мл (52,5–72,5 нмоль / л).
Долгое время считалось, что функция витамина D заключается в поддержании нормальной структуры опорно-двигательного аппарата за счет гомеостаза кальция и фосфора, но в последние несколько десятилетий возросло его влияние на регуляцию клеток, их пролиферацию, дифференцировку, апоптоз и иммунную модуляцию. Эти функции витамина D опосредованы рецептором витамина D (VDR), который после активации взаимодействует с рецептором ретиноида X (RXR) с образованием гетеродимерного комплекса.
Рецептор витамина D (VDR) выполняет в коже и некоторые другие функции, не связанные с 1,25-дигидроксивитамином-D3. Например, VDR играет важную роль в регулировании роста зрелых волосяных фолликулов. При некоторых мутациях VDR нарушается регуляция активности соответствующего гена, что приводит к таким аномалиям развития волосяного фолликула, как очаговая или полная алопеция (выпадение волос). VDR также является опухолевым супрессором. Рецептор VDR принадлежит к тем немногим факторам, которые выполняют эти функции. Кроме того, 1,25-дигидроксивитамин-D3 является мощным иммуномодулятором кожи.
Витамин D играет жизненно важную роль в коже: кератиноциты являются не только источником витамина D, но и ответчиком на его активную форму. Они являются единственными клетками в организме, которые могут синтезировать витамин D из его предшественника 7-DHC и оснащены всем ферментативным механизмом (CYP27A1 и CYP27B1), необходимым для метаболизма витамина D в его активный метаболит 1,25 (OH) 2D. Витамин D3 синтезируется в коже из его предшественника 7-DHC под воздействием UVB и метаболизируется до его активной формы 1,25 (OH) 2D3 через две последующие реакции гидроксилирования ферментами CYP27A1 и CYP27B1. Он становится неактивным через катаболический фермент CYP24A1.
Доказано, что витамин D влияет на пролиферацию и дифференцировку клеток кожи либо напрямую, либо через его взаимодействие с кальцием. Многие исследования in vitro показали дозозависимое влияние витамина D на пролиферацию и дифференцировку кератиноцитов. Было обнаружено, что при низкой концентрации (<10−9) 1,25 (OH) 2D3 усиливает пролиферацию кератиноцитов, а при высокой концентрации (>10−8) ингибирует пролиферацию и способствует дифференцировке. 1,25 (OH) 2D способствует дифференцировке кератиноцитов за счет повышенного синтеза структурных компонентов (инволюкрин, трансглутаминаза, лорикрин и филаггрин) ороговевшей оболочки. Влияние витамина D на дифференцировку также частично обусловлено повышением внутриклеточного уровня кальция, вызванным стимуляцией рецептора кальция, повышением экспрессии фосфолипазы C-γ1 и усилением образования церамидов.
Витамин D может также непосредственно регулировать дифференцировку кератиноцитов посредством взаимодействия с VDR. Процесс опосредованной витамином D эпидермальной дифференцировки через VDR является последовательным и требует избирательного связывания VDR с двумя основными коактиваторами: белком, взаимодействующим с рецептором витамина D (DRIP), и соактиватором стероидных рецепторов (SRC). Было отмечено, что DRIP205 преимущественно экспрессируется в пролиферирующих кератиноцитах и, по мере дифференцировки клеток, экспрессия DRIP205 снижается, а экспрессия SRC3 увеличивается. Было продемонстрировано, что кальций также регулирует экспрессию этих 2 коактиваторов и взаимодействует с VDR для дифференцировки кератиноцитов.
Другим аспектом пролиферации и дифференцировки кератиноцитов является поддержание эпидермального барьера. Исследования показали, что местное применение кальцитриола (1,25 [OH] 2D) восстанавливает барьер проницаемости, который был нарушен при применении кортикостероидных препаратов или лаурилсульфата натрия. Витамин D опосредует свое влияние на эпидермальный барьер благодаря усиленному синтезу структурных белков ороговевшей оболочки. Кроме того, 1,25 (OH) 2D регулирует процессинг гликозилкерамидов с длинной цепью, необходимых для образования липидного барьера.
Влияние витамина D на апоптоз кератиноцитов зависит от дозы, как и его влияние на пролиферацию клеток. В физиологических концентрациях витамин D предотвращает апоптоз, а в высоких концентрациях он может вызывать апоптоз в кератиноцитах.
Врожденная иммунная система кожи включает физические барьерные структуры, такие как роговой слой, иммунные клетки (нейтрофилы, моноциты, макрофаги, дендритные клетки, естественные клетки-киллеры [NK] и т. д.) и антимикробные пептиды (AMP). Кожный синтез AMP является основным механизмом защиты кожи от воздействия окружающей среды или микробной инвазии. Многие резидентные клетки кожи (кератиноциты, себоциты, клетки эккринной железы и тучные клетки) и циркулирующие клетки (нейтрофилы и NK-клетки) способствуют синтезу AMP в коже. Известно более 20 белков с антимикробной функцией, которые распознаются в коже; однако β-дефензин и кателицидины являются двумя основными группами AMP кожи. Кателицидин и β-дефензин опосредуют антимикробную активность либо непосредственно, разрушая мембрану бактериальной клетки и оболочку вируса, либо косвенно, воздействуя на различные сигнальные пути в клетках, чтобы инициировать ответ хозяина. Уровень AMP низок в неповрежденной коже и увеличивается после разрушения барьера или инфекции. Одним из возможных путей достижения этой цели является усиление экспрессии CYP27B1 после повреждения кожи, что увеличивает локальный синтез активного витамина D. Кателицидин и β-дефензин являются прямыми мишенями для транскрипции витамина D, причем кателицидин индуцируется связыванием комплекса 1,25 (OH) 2D-VDR с VDRE в области промотора гена; однако, β-дефензин требует ядерного фактора κB вместе с комплексом 1,25 (OH) 2D-VDR для его транскрипции. Также показано, что витамин D регулирует синтез AMP с помощью механизмов, отличных от прямой активации транскрипции. Активность кателицидина и других AMP в коже человека контролируется путем ферментативной обработки сериновыми протеазами KLK5 и KLK7. В одном из исследований показано, что 1,25 (OH) 2D3 может влиять на продукцию AMP в коже, регулируя синтез и протеазную активность KLK5 и KLK7.
Помимо регуляции синтеза AMP в коже, 1,25 (OH) 2D3 и кальципотриол (аналог витамина D) опосредуют иммуносупрессивное действие в коже за счет снижения презентации антигена либо непосредственно, воздействуя на клетки Лангерганса, либо косвенно, модулируя выработку цитокинов кератиноцитами. В последнее время многие исследования показали, что кальципотриол обеспечивает толерантность или иммуносупрессию в коже путем индукции CD4 + CD25 + T-регуляторных (Treg) клеток, что предотвращает последующую антиген-специфическую пролиферацию CD8 + T-клеток и продукцию IFN-γ. Исследования, изучающие влияние витамина D на Т-клетки в коже, противоречивы. В то время как некоторые исследования показали, что 1,25 (OH) 2D3 и его аналоги предотвращают инфильтрацию Т-клеток кожи путем подавления экспрессии, другие исследования показали, что 1,25 (OH) 2D3 индуцирует экспрессию специфического рецептора CCR10 на T -клетки. Было показано, что сезонные колебания уровня витамина D влияют на экспрессию рецепторов кожи (в течение лета этот уровень повышен).
Постоянное длительное пребывание на солнце, как известно, может приводить к повреждению упругой структуры кожи и возрастанию риска развития морщин. Тем не менее, исходя из понимания важности воздействия солнца для образования в коже витамина D3, для синтеза достаточного количества витамина D3 было бы разумным пребывание на солнце с незащищенной кожей в течение ограниченного промежутка времени. При правильном применении солнцезащитных средств (2 мг/см2, т. е. приблизительно 25–30 г на все тело взрослого человека в купальнике), количество витамина D3, образующегося в коже, снижается более чем на 95%. Воздействие солнечного света в течение 5–15 мин. с 1000 до 1500 весной, летом и осенью, как правило, является достаточной экспозицией для людей с II или III типом кожи. При этом доза облучения составляет приблизительно 25 % экспозиции, необходимой для возникновения минимальной эритемной реакции, т. е. небольшого порозовения кожи. После такого воздействия рекомендуется применение солнцезащитного крема с SPF 15 и более для предотвращения вредного влияния хронического длительного воздействия солнечных лучей.
Таким образом, витамин D является важным и необходимым, действующим как индикатор общего состояния здоровья и хорошего самочувствия. Доказано его огромное влияние на ряд кожных заболеваний (псориаз, экзема, акне, атопический дерматит, рак кожи и т.д.). Поэтому необходимо контролировать уровень витамина D и корректировать его дефицит.
Источник